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This article is a tutorial on Markov chain Monte Carlo simulations and
their statistical analysis. The theoretical concepts are illustrated through
many numerical assignments from the author’s book [7] on the subject.
Computer code (in Fortran) is available for all subjects covered and can
be downloaded from the web.

Contents

1. Introduction

Markov chain Monte Carlo (MC) simulations started in earnest with the

1953 article by Nicholas Metropolis, Arianna Rosenbluth, Marshall Rosen-

bluth, Augusta Teller and Edward Teller [18]. Since then MC simulations

have become an indispensable tool with applications in many branches of

science. Some of those are reviewed in the proceedings [13] of the 2003

Los Alamos conference, which celebrated the 50th birthday of Metropolis

simulations.

The purpose of this tutorial is to provide an overview of basic concepts,

which are prerequisites for an understanding of the more advanced lectures

of this volume. In particular the lectures by Prof. Landau are closely related.

The theory behind MC simulations is based on statistics and the analy-
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sis of MC generated data is applied statistics. Therefore, statistical concepts

are reviewed first in this tutorial. Nowadays abundance of computational

power implies also a paradigm shift with respect to statistics: Computation-

ally intensive, but conceptually simple, methods belong at the forefront. MC

simulations are not only relevant for simulating models of interest, but they

constitute also a valuable tool for approaching statistics.

The point of departure for treating Markov chain MC simulations is the

Metropolis algorithm for simulating the Gibbs canonical ensemble. The heat

bath algorithm follows. To illustrate these methods our systems of choice

are discrete Potts and continuous O(n) models. Both classes of models are

programmed for arbitrary dimensions (d = 1, 2, 3, 4, . . . ). On the advanced

side we introduce multicanonical simulations, which cover an entire tem-

perature range in a single simulation, and allow for direct calculations of

the entropy and free energy.

In summary, we consider Statistics, Markov Chain Monte Carlo simu-

lations, the Statistical Analysis of Markov chain data and, finally, Multi-

canonical Sampling. This tutorial is abstracted from the author’s book on

the subject [7]. Many details, which are inevitably ommitted here, can be

found there.

2. Probability Distributions and Sampling

A sample space is a set of points or elements, in natural sciences called

measurements or observations, whose occurrence depends on chance.

Carrying out independent repetitions of the same experiment is called sam-

pling. The outcome of each experiment provides an event called data point.

In N such experiments we may find the event A to occur with frequency

n, 0 ≤ n ≤ N . The probability assigned to the event A is a number P (A),

0 ≤ P (A) ≤ 1, so that

P (A) = lim
N→∞

n

N
. (1)

This equation is sometimes called the frequency definition of probabil-

ity.

Let us denote by P (a, b) the probability that xr ∈ [a, b] where xr is a

continuous random variable drawn in the interval (−∞, +∞) with the

probability density f(x). Then,

P (a, b) =

∫ b

a

f(x) dx. (2)
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Knowledge of all probabilities P (a, b) implies

f(x) = lim
y→x−

P (y, x)

x − y
≥ 0 . (3)

The (cumulative) distribution function of the random variable xr is

defined as

F (x) = P (xr ≤ x) =

∫ x

−∞

f(x) dx . (4)

A particularly important case is the uniform probability distribution

for random numbers between [0, 1),

u(x) =

{
1 for 0 ≤ x < 1;

0 elsewhere.
(5)

Remarkably, the uniform distribution allows for the construction of general

probability distributions. Let

y = F (x) =

∫ x

−∞

f(x′) dx′

and assume that the inverse x = F−1(y) exists. For yr being a uniformly

distributed random variable in the range [0, 1) it follows that

xr = F−1(yr) (6)

is distributed according to the probability density f(x).

The Gaussian or normal distribution is of major importance. Its

probability density is

g(x) =
1

σ
√

2π
e−x2/(2σ2) (7)

where σ2 is the variance and σ > 0 the standard deviation. The Gaus-

sian distribution function G(x) is related to that of variance σ2 = 1 by

G(x) =

∫ x

−∞

g(x′) dx′ =
1√
2π

∫ x/σ

−∞

e−(x′′)2/2 dx′′ =
1

2
+

1

2
erf

(
x

σ
√

2

)
.

(8)

In principle we could now generate Gaussian random numbers according

to Eq. (6). However, the numerical calculation of the inverse error function

is slow and makes this an impractical procedure. Much faster is to express
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the product probability density of two independent Gaussian distributions

in polar coordinates

1

2π σ2
e−x2/(2σ2) e−y2/(2σ2) dx dy =

1

2π σ2
e−r2/(2σ2) dφ rdr ,

and to use the relations

xr = rr cosφr and yr = rr sinφr . (9)

3. Random Numbers and Fortran Code

According to Marsaglia and collaborators [17] a list of desirable properties

for (pseudo) random number generators is:

(i) Randomness. The generator should pass stringent tests for randomness.

(ii) Long period.

(iii) Computational efficiency.

(iv) Repeatability. Initial conditions (seed values) completely determine

the resulting sequence of random variables.

(v) Portability. Identical sequences of random variables may be produced

on a wide variety of computers (for given seed values).

(vi) Homogeneity. All subsets of bits of the numbers are random.

Physicists have added a number of their applications as new tests (e.g.,

see [22] and references therein). In our program package a version of the

random number generator of Marsaglia and collaborators [17] is provided.

Our corresponding Fortran code consists of three subroutines:

rmaset.f to set the initial state of the random number generator.

ranmar.f which provides one random number per call.

rmasave.f to save the final state of the generator.

In addition, rmafun.f is a Fortran function version of ranmar.f and

calls to these two routines are freely interchangeable. Related is also the

subroutine rmagau.f, which generates two Gaussian random numbers.

The subroutine rmaset.f initializes the generator to mutually indepen-

dent sequences of random numbers for distinct pairs of

−1801 ≤ iseed1 ≤ 29527 and − 9373 ≤ iseed2 ≤ 20708 . (10)

This property makes the generator quite useful for parallel processing.
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STMC

ForProgAssignments ForLib ForProc Work

a0102_02 a0102_03 ... ... a0103_01 ... ...

Fig. 1. The Fortran routines are provided and prepared to run in the tree structure of
folders depicted in this figure. This tree unfolds from the downloaded file.

3.1. How to get and run the Fortan code

To download the Fortran code book visit the website

http : //b berg.home.comcast.net/

and follow the instructions given there. If the above link should be unavail-

able, visit the author’s homepage which is presently located at

http://www.hep.fsu.edu/~berg .

After installation the directory tree shown in Fig. 1 is obtained. ForLib

contains a library of functions and subroutines which is closed in the sense

that no reference to non-standard functions or subroutines outside the li-

brary is ever made. Fortran programs are contained in the folder ForProg

and procedures for interactive use in ForProc. It is recommended to leave

the hyperstructure of program dependencies introduced between the levels

of the STMC directory tree intact. Otherwise, complications may result

which require advanced Fortran skills.

Assignment: Marsaglia random numbers. Run the program mar.f

to reproduce the following results:

RANMAR INITIALIZED. MARSAGLIA CONTINUATION.

idat, xr = 1 0.116391063 idat, xr = 1 0.495856345

idat, xr = 2 0.96484679 idat, xr = 2 0.577386141

idat, xr = 3 0.882970393 idat, xr = 3 0.942340136

idat, xr = 4 0.420486867 idat, xr = 4 0.243162394

extra xr = 0.495856345 extra xr = 0.550126791
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Fig. 2. Gaussian peaked distribution function and estimates of xq for the 70%
(approximately 1 σ) and 95% (approximately 2 σ) confidence intervals.

Understand how to re-start the random number generator and how to

perform different starts when the continuation data file ranmar.d does

not exist. You find mar.f in ForProg/Marsaglia and it includes subrou-

tines from ForLib. To compile properly, mar.f has to be located two lev-

els down from a root directory STMC. The solution is given in the folder

Assignments/a0102 02.

4. Confidence Intervals and Heapsort

Let a distribution function F (x) and q, 0 ≤ q ≤ 1 be given. One defines

q-tiles (also called quantiles or fractiles) xq by means of

F (xq) = q . (11)

The median x 1
2

is often (certainly not always) the typical value of the

random variable xr.
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Example: For the normal distribution the precise probability content of

the confidence intervals

[xq, x1−q] = [−nσ, nσ] for n = 1, 2

is p = 1 − 2q = 68.27% for one σ and p = 1 − 2q = 95.45% for two σ.

The peaked distribution function

Fq(x) =

{
F (x) for F (x) ≤ 1

2 ,

1 − F (x) for F (x) > 1
2 .

(12)

provides a useful way to visualize probability intervals of a distribution. It

is illustrated in Fig. 2 for the Gaussian distribution.

Sampling provides us with an empirical distribution function and in

practice the problem is to estimate confidence intervals from the empiri-

cal data. Assume we generate n random numbers x1, ..., xn independently

according to a probability distribution F (x). The n random numbers con-

stitute a sample. We may re-arrange the xi in increasing order. Denoting

the smallest value by xπ1 , the next smallest by xπ2 , etc., we arrive at

xπ1 ≤ xπ2 ≤ · · · ≤ xπn
(13)

where π1, . . . , πn is a permutation of 1, . . . , n. Each of the xπi
is called an

order statistic. An estimator for the distribution function F (x) is the

empirical distribution function

F (x) =
i

n
for xπi

≤ x < xπi+1 , i = 0, 1, . . . , n − 1, n (14)

with the definitions xπ0 = −∞ and xπn+1 = +∞.

To calculate F (x) and the corresponding peaked distribution function,

one needs an efficient way to sort n data values in ascending (or descending)

order. This is provided by the heapsort, which relies on two steps: First the

data are arranged in a heap, then the heap is sorted. A heap is a partial

ordering so that the number at the top is larger or equal than the two

numbers in the second row, provided at least three numbers xi exist. More

details are given in [7]. The computer time needed to succeed with this

sorting process grows only like n log2 n, because there are log2 n levels in

the heap, see Knuth [15] for an exhaustive discussion of sorting algorithms.

5. The Central Limit Theorem and Binning

How is the sum of two independent random variables

yr = xr
1 + xr

2 . (15)
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distributed? We denote their probability density of yr by g(y). The corre-

sponding cumulative distribution function is given by

G(y) =

∫

x1+x2≤y

f1(x1) f2(x2) dx1 dx2 =

∫ +∞

−∞

f1(x) F2(y − x) dx

where F2(x) is the distribution function of the random variable xr
2. We take

the derivative and obtain the probability density of yr

g(y) =
dG(y)

dy
=

∫ +∞

−∞

f1(x) f2(y − x) dx . (16)

The probability density of a sum of two independent random variables is

the convolution of the probability densities of these random variables.

Example: Sums of uniform random numbers, corresponding to the sums

of an uniformly distributed random variable xr ∈ (0, 1]:

(a) Let yr = xr + xr, then

g2(y) =






y for 0 ≤ y ≤ 1,

2 − y for 1 ≤ y ≤ 2,

0 elsewhere.

(17)

(b) Let y r = xr + xr + xr, then

g3(y) =






y2/2 for 0 ≤ y ≤ 1,

(−2y2 + 6y − 3)/2 for 1 ≤ y ≤ 2,

(y − 3)2/2 for 2 ≤ y ≤ 3,

0 elsewhere.

(18)

The convolution (16) takes on a simple form in Fourier space. In

statistics the Fourier transformation of the probability density is known

as characteristic function, defined as the expectation value of eitxr

:

φ(t) = 〈eitxr〉 =

∫ +∞

−∞

eitx f(x) dx . (19)

A straightforward calculation gives

φ(t) = exp

[
−1

2

σ2
x

N
t2
]

(20)

for the characteristic function of the Gaussian probability density (7). The

characteristic function is particularly useful for investigating sums of ran-
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dom variables, yr = xr
1 + xr

2:

φy(t) = 〈e(itxr

1+itxr

2)〉 (21)

=

∫ +∞

−∞

∫ +∞

−∞

eitx1 eitx2 f1(x1) f2(x2) dx1 dx2 = φx1(t) φx2(t) .

The characteristic function of a sum of random variables is the

product of their characteristic functions. The result generalizes im-

mediately to N random variables yr = xr
1 + · · · + xr

N . The characteristic

function of yr is

φy(t) =

N∏

i=1

φxi
(t) (22)

and the probability density of yr is the Fourier back-transformation of this

characteristic function

g(y) =
1

2π

∫ +∞

−∞

dt e−ity φy(t) . (23)

The probability densitiy of the sample mean is obtained as follows:

The arithmetic mean of yr is x r = yr/N . We denote the probability density

of yr by gN (y) and the probability density of the arithmetic mean by ĝN (x).

They are related by

ĝN (x) = N gN(Nx) . (24)

This follows by substituting y = Nx into gN (y) dy:

1 =

∫ +∞

−∞

gN (y) dy =

∫ +∞

−∞

gN(Nx) 2dx =

∫ +∞

−∞

ĝN (x) dx .

Fig. 3 illustrates equation (24) for the sums of two (17) and three (18)

uniformly distributed random variables. This suggests that sampling leads

to convergence of the mean by reducing its variance. We use the character-

istic function φy(t) = [φx(t)]N to understand the general behavior. The

characteristic function for the corresponding arithmetic average is

φx(t) =

∫ +∞

−∞

dx eitx ĝN (x) =

∫ +∞

−∞

dy exp

(
i

t

N
y

)
gN(y) .

Hence,

φx(t) = φy

(
t

N

)
=

[
φx

(
t

N

)]N

. (25)
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Fig. 3. Probability densities for the arithmetic means of two and three uniformly dis-
tributed random variables, ĝ2(x) and ĝ3(x), respectively.

To simplify the equations we restrict ourselves to x̂ = 0. Let us consider a

probability density f(x) and assume that its moment exists, implying that

the characteristic function is a least two times differentiable, so that

φx(t) = 1 − σ2
x

2
t2 + O(t3) . (26)

The leading term reflects the the normalization of the probability density

and the first moment is φ′(0) = x̂ = 0. The characteristic function of the

mean becomes

φx(t) =

[
1 − σ2

x

2N2
t2 + O

(
t3

N3

)]N

= exp

[
−1

2

σ2
x

N
t2
]

+ O
(

t3

N2

)
.

This is the central limit theorem: The probability density of the arith-

metic mean x r converges towards the Gaussian probability density with

variance (compare Eq. (20))

σ2(x r) =
σ2(xr)

N
. (27)



October 20, 2004 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) article

Markov Chain Monte Carlo Simulations and their Statistical Analysis 11

Binning: The notion of binning introduced here should not be confused

with histogramming. Binning means here that we group NDAT data into

NBINS bins, where each binned data point is the arithmetic average of

NBIN = [NDAT/NBINS] (Fortran integer division)

data points in their original order. Preferably NDAT is a multiple of NBINS.

The purpose of the binning procedure is twofold:

(1) When the the central limit theorem applies, the binned data will be-

come practically Gaussian, as soon as NBIN becomes large enough. This

allows to apply Gaussian error analysis methods even when the original

data are not Gaussian.

(2) When data are generated by a Markov process subsequent events are

correlated. For binned data these correlations are reduced and can in

practical applications be neglected, once NBIN is sufficiently large com-

pared to the autocorrelation time (see section 10).

6. Gaussian Error Analysis for Large and Small Samples

The central limit theorem underlines the importance of the normal distri-

bution. Assuming we have a large enough sample, the arithmetic mean of a

suitable expectation value becomes normally distributed and the calculation

of the confidence intervals is reduced to studying the normal distribution. It

has become the convention to use the standard deviation of the sample

mean

σ = σ(x r) with x r =
1

N

N∑

i=1

xr
i (28)

to indicate its confidence intervals [x̂−nσ, x̂+nσ] (the dependence of σ on

N is suppressed). For a Gaussian distribution equation Eq. (8) yields the

probability content p of the confidence intervals (28) to be

p = p(n) = G(nσ) − G(−nσ) =
1√
2π

∫ +n

−n

dx e−
1
2x2

= erf

(
n√
2

)
. (29)

In practice the roles of x and x̂ are interchanged: One would like to know the

likelihood that the unknown exact expectation value x̂ will be in a certain

confidence interval around the measured sample mean. The relationship

x ∈ [x̂ − nσ, x̂ + nσ] ⇐⇒ x̂ ∈ [x − nσ, x + nσ] (30)

solves the problem. Conventionally, these estimates are quoted as

x̂ = x ±△x (31)
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where the error bar △x is often an estimator of the exact standard

deviation.

An obvious estimator for the variance σ2
x is

(s′ rx )2 =
1

N

N∑

i=1

(xr
i − x r)2 (32)

where the prime indicates that we shall not be happy with it, because we

encounter a bias. An estimator is said to be biased when its expectation

value does not agree with the exact result. In our case

〈(s′ rx )2〉 6= σ2
x . (33)

An estimator whose expectation value agrees with the true expectation

value is called unbiased. The bias of the definition (32) comes from re-

placing the exact mean x̂ by its estimator x r. The latter is a random vari-

able, whereas the former is just a number. Some algebra [7] shows that the

desired unbiased estimator of the variance is given by

(sr
x)2 =

N

N − 1
(s′ rx )2 =

1

N − 1

N∑

i=1

(xr
i − x r)2 . (34)

Correspondingly, the unbiased estimator of the variance of the sample mean

is

(sr
x)2 =

1

N(N − 1)

N∑

i=1

(xr
i − x r)2 . (35)

Gaussian difference test: In practice one is often faced with the

problem to compare two different empirical estimates of some mean. How

large must D = x−y be in order to indicate a real difference? The quotient

dr =
Dr

σD
, σD =

√
σ2

x + σ2
y (36)

is normally distributed with expectation zero and variance one, so that

P = P (|dr| ≤ d) = G0(d) − G0(−d) = erf

(
d√
2

)
. (37)

The likelihood that the observed difference |x− y| is due to chance

is defined to be

Q = 1 − P = 2 G0(−d) = 1 − erf

(
d√
2

)
. (38)
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If the assumption is correct, then Q is a uniformly distributed random

variable in the range [0, 1). Examples are collected in table 1. Often a 5%

cut-off is used to indicate a real discrepancy.

Table 1. Gaussian difference tests (compile and run the program provided in
ForProc/Gau dif, which results in an interactive dialogue).

x1 ± σx1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.05 1.000 ± 0.025

x2 ± σx2 1.2 ± 0.2 1.2 ± 0.1 1.2 ± 0.0 1.2 ± 0.00 1.200 ± 0.025

Q 0.37 0.16 0.046 0.000063 0.15 × 10−7

Gosset’s Student Distribution: We ask the question: What happens

with the Gaussian confidence limits when we replace the variance σ2
x by its

estimator s2
x in statements like

|x − x̂|
σx

< 1.96 with 95% probability.

For sampling from a Gaussian distribution the answer was given by Gos-

set, who published his article 1908 under the pseudonym Student in

Biometrika [20]. He showed that the distribution of the random variable

tr =
x r − x̂

sr
x

(39)

is given by the probability density

f(t) =
1

(N − 1)B(1/2, (N − 1)/2)

(
1 +

t2

N − 1

)−N

2

. (40)

Here B(x, y) is the beta function. The fall-off is a power law |t|−N for

|t| → ∞, instead of the exponential fall-off of the normal distribution.

Some confidence probabilities of the Student distribution are (assignment

a0203 01):

N \ S 1.0000 2.0000 3.0000 4.0000 5.0000

2 .50000 .70483 .79517 .84404 .87433

3 .57735 .81650 .90453 .94281 .96225

4 .60900 .86067 .94233 .97199 .98461

8 .64938 .91438 .98006 .99481 .99843

16 .66683 .93605 .99103 .99884 .99984

32 .67495 .94567 .99471 .99963 .99998

64 .67886 .95018 .99614 .99983 1.0000

INFINITY: .68269 .95450 .99730 .99994 1.0000
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For N ≤ 4 we find substantial deviations from the Gaussian confidence

levels, whereas up to two standard deviations reasonable approximations

of Gaussian confidence limits are obtained for N ≥ 16 data. If desired,

the Student distribution function can always be used to calculate the exact

confidence limits. When the central limit theorem applies, we can bin a

large set of non-Gaussian data into 16 almost Gaussian data to reduce the

error analysis to Gaussian methods.

Student difference test: This test is a generalization of the Gaussian

difference test. It takes into account that only a finite number of events are

sampled. As before it is assumed that the events are drawn from a normal

distribution. Let the following data be given

x calculated from M events, i .e., σ2
x = σ2

x/M (41)

y calculated from N events, i .e., σ2
y = σ2

y/N (42)

and unbiased estimators of the variances are

s2
x = s2

x/M =

∑M
i=1(xi − x)2

M (M − 1)
and s2

y = s2
y/N =

∑N
j=1(yj − y)2

N (N − 1)
. (43)

Under the additional assumption σ2
x = σ2

y the probability

P (|x − y| > d) (44)

is determined by the Student distribution function in the same way as the

probability of the Gaussian difference test is determined by the normal

distribution.

Examples for the Student difference test for x1 = 1.00 ± 0.05 from M

data and x2 = 1.20± 0.05 from N data are given in table 2. The Gaussian

difference test gives Q = 0.0047. For M = N = 512 the Student Q value is

practically identical with the Gaussian result, for M = N = 16 it has almost

doubled. Likelihoods above a 5% cut-off, are only obtained for M = N = 2

(11%) and M = 16, N = 4 (7%). The latter result looks a bit surprising,

because its Q value is smaller than for M = N = 4. The explanation is that

for M = 16, N = 4 data one would expect the N = 4 error bar to be two

times larger than the M = 16 error bar, whereas the estimated error bars

are identical. This leads to the problem: Assume data are sampled from

the same normal distribution, when are two measured error bars consistent

and when not?
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Table 2. Student difference test for the data x1 = 1.00 ± 0.05
and x2 = 1.20 ± 0.05 (compile and run the program provided in
ForProc/Stud dif, which results in an interactive dialogue).

M 512 32 16 16 4 3 2

N 512 32 16 4 4 3 2

Q 0.0048 0.0063 0.0083 0.072 0.030 0.047 0.11

6.1. χ2 Distribution, Error of the Error Bar, F-Test

The distribution of the random variable

(χr)2 =

N∑

i=1

(yr
i )2 , (45)

where each yr
i is normally distributed, defines the χ2 distribution with N

degrees of freedom. The study of the variance (sr
x)2 of a Gaussian sample

can be reduced to the χ2-distribution with f = N − 1 degrees of freedom

(χr
f )2 =

(N − 1) (sr
x)2

σ2
x

=

N∑

i=1

(xr
i − x r)2

σ2
x

. (46)

The probability density of χ2 per degree of freedom (pdf) is

fN(χ2) = Nf(Nχ2) =
a e−aχ2 (

aχ2
)a−1

Γ(a)
where a =

N

2
. (47)

The Error of the Error Bar: For normally distributed data the num-

ber of data alone determines the errors of error bars, because the χ2 distri-

bution is exactly known. Confidence intervals for variance estimates s2
x = 1

from NDAT data (assignment a0204 01) are:

q q q 1-q 1-q

NDAT=2**K .025 .150 .500 .850 .975

2 1 .199 .483 2.198 27.960 1018.255

4 2 .321 .564 1.268 3.760 13.902

8 3 .437 .651 1.103 2.084 4.142

16 4 .546 .728 1.046 1.579 2.395

32 5 .643 .792 1.022 1.349 1.768

1024 10 .919 .956 1.001 1.048 1.093

16384 14 .979 .989 1.000 1.012 1.022
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The variance ratio test or F-test: We assume that two sets of normal

data are given together with estimates of their variances:
(
s2

x1
, N1

)
and(

s2
x2

, N2

)
. We would like to test whether the ratio F = s2

x1
/s2

x2
differs from

F = 1 in a statistically significant way. The probability (f1/f2)F < w,

where fi = Ni − 1, i = 1, 2, is known to be

H(w) = 1 − BI

(
1

w + 1
,
1

2
f2,

1

2
f1

)
. (48)

Examples are given in table 3. This allows us later to compare the efficiency

of MC algorithms.

Table 3. Examples for the F-test (use the program in ForProc/F test

or the one in ForProc/F stud).

△x1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

N1 16 16 64 1024 2048 32 1024 16

△x2 1.0 1.0 1.0 1.05 1.05 2.0 2.0 2.0

N2 16 8 16 1024 2048 8 256 16

Q 1.0 0.36 0.005 0.12 0.027 0.90 0.98 0.01

6.2. The Jackknife Approach

Jackknife estimators allow to correct for the bias and the error of the bias.

The method was introduced in the 1950s (for a review see [7]). It is rec-

ommended as the standard for error bar calculations. In unbiased situ-

ations the jackknife and the usual error bars agree. Otherwise the jackknife

estimates are improvements.

The unbiased estimator of the expectation value x̂ is

x =
1

N

N∑

i=1

xi

Bias problems may occur when one estimates a non-linear function of x̂:

f̂ = f(x̂) . (49)

Typically, the bias is of order 1/N :

bias (f) = f̂ − 〈f〉 =
a1

N
+

a2

N2
+ O(

1

N3
) (50)

where a1 and a2 are constants. But for the biase estimator we lost the ability

to estimate the variance σ2(f) = σ2(f)/N via the standard equation

s2(f) =
1

N
s2(f) =

1

N (N − 1)

N∑

i=1

(fi − f)2 , (51)
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because fi = f(xi) is not a valid estimator of f̂ . Further, it is in non-

trivial applications almost always a bad idea to use linear error propagation

formulas. Jackknife methods are not only easier to implement, but also more

precise and far more robust.

The error bar problem for the estimator f is conveniently overcome by

using jackknife estimators f
J
, fJ

i , defined by

f
J

=
1

N

N∑

i=1

fJ
i with fJ

i = f(xJ
i ) and xJ

i =
1

N − 1

∑

k 6=i

xk . (52)

The estimator for the variance σ2(f
J
) is

s2
J(f

J
) =

N − 1

N

N∑

i=1

(fJ
i − f

J
)2 . (53)

Straightforward algebra shows that in the unbiased case the estimator of

the jackknife variance (53) reduces to the normal variance (51). Notably

only of order N (not N2) operations are needed to construct the jackknife

averages xJ
i , i = 1, . . . , N from the orginal data.

7. Statistial Physics and Potts Models

MC simulations of systems described by the Gibbs canonical ensemble aim

at calculating estimators of physical observables at a temperature T . In

the following we choose units so that the Boltzmann constant becomes one,

i.e. β = 1/T . Let us consider the calculation of the expectation value of

an observable O. Mathematically all systems on a computer are discrete,

because a finite word length has to be used. Hence, the expectation value

is given by the sum

Ô = Ô(β) = 〈O〉 = Z−1
K∑

k=1

O(k) e−β E(k)

(54)

where Z = Z(β) =

K∑

k=1

e−β E(k)

(55)

is the partition function. The index k = 1, . . . , K labels the configura-

tions of the system, and E(k) is the (internal) energy of configuration k.

The configurations are also called microstates. To distinguish the config-

uration index from other indices, it is put in parenthesis.

We introduce generalized Potts models in an external magnetic field on

d-dimensional hypercubic lattices with periodic boundary conditions (i.e.,
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the models are defined on a torus in d dimensions). Without being overly

complicated, these models are general enough to illustrate the essential

features we are interested in. In addition, various subcases of these models

are by themselves of physical interest.

We define the energy function of the system by

−β E(k) = −β E
(k)
0 + H M (k) (56)

where

E
(k)
0 = −2

∑

〈ij〉

δ(q
(k)
i , q

(k)
j ) +

2 dN

q
(57)

with δ(qi, qj) =

{
1 for qi = qj

0 for qi 6= qj
and M (k) = 2

N∑

i=1

δ(1, q
(k)
i ) .

The sum 〈ij〉 is over the nearest neighbor lattice sites and q
(k)
i is called

the Potts spin or Potts state of configuration k at site i. For the q-state

Potts model q
(k)
i takes on the values 1, . . . , q. The external magnetic field is

chosen to interact with the state qi = 1 at each site i, but not with the other

states qi 6= 1. The case q = 2 becomes equivalent to the Ising ferromagnet.

See F.Y. Wu [25] for a detailed review of Potts models.

For the energy per spin our notation is

es = E/N . (58)

A factor of two and an additive constant are introduced in Eq. (57), so that

es agrees for q = 2 with the conventional Ising model definition, and

β = βIsing =
1

2
βPotts . (59)

For the 2d Potts models a number of exact results are known in the infi-

nite volume limit, mainly due to work by Baxter [1]. The phase transions

temperatures are

1

2
βPotts

c = βc =
1

Tc
=

1

2
ln(1 +

√
q), q = 2, 3, . . . . (60)

At βc the average energy per state is

ec
s = Ec

0/N =
4

q
− 2 − 2/

√
q . (61)

The phase transition is second order for q ≤ 4 and first order for q ≥ 5.

The exact infinite volume latent heats △es and entropy jumps △s were

also found by Baxter [1], while the interface tensions fs were derived later

(see [9] and references therein).
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Fig. 4. Energy histograms of 100 000 entries each for the Ising model on a 20×20 lattice:
Random Sampling gives statistically independent configurations at β = 0. Histograms
at β = 0.2 and β = 0.4 are generated with Markov chain MC. Re-weighting of the β = 0
random configurations to β = 0.2 is shown to fail (assignments a0301 02 and a0303 02).

8. Sampling and Re-weighting

For the Ising model it is straightforward to sample statistically indepen-

dent configurations. We simply have to generate N spins, each either up

or down with 50% likelihood. This is called random sampling. In Fig. 4

a thus obtained histogram for the 2d Ising model energy per spin is

depicted.

Note that is is very important to distinguish the energy measurements

on single configurations from the expectation value. The expectation value

ês is a single number, while es fluctuates. From the measurement of many

es values one finds an estimator of the mean, es, which fluctuates too.

The histogram entries at β = 0 can be re-weighted so that they corre-

spond to other β values. We simply have to multiply the entry corresponding

to energy E by exp(−βE). Similarly histograms corresponding to the Gibbs



October 20, 2004 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) article

20 B.A. Berg

ensemble at some value β0 can be re-weighted to other β values. Care has to

be taken to ensure that the involved arguments of the exponential function

do not become too large. This can be done by first calculating the mean

energy and then implementing re-weighting with respect to the difference

from the mean.

Re-weighting has a long history. For finite size scaling (FSS) investi-

gations of second order phase transitions its usefulness has been stressed

by Ferrenberg and Swendsen [12] (accurate determinations of peaks of the

specific heat or of susceptibilities).

In Fig. 4 re-weighting is done from β0 = 0 to β = 0.2. But, by com-

parison to the histogram from a Metropolis MC calculation at β = 0.2, the

result is seen to be disastrous. The reason is easily identified: In the range

where the β = 0.2 histogram takes on its maximum, the β = 0 histogram

has not a single entry. Our random sampling procedure misses the impor-

tant configurations at β = 0.2. Re-weighting to new β values works only in

a range β0 ±△β, where △β → 0 in the infinite volume limit.

Important Configurations: Let us determine the important contri-

butions to the partition function. The partition function can be re-written

as a sum over energies

Z = Z(β) =
∑

E

n(E) e−β E (62)

where the unnormalized spectal density n(E) is defined as the number of

microstates k with energy E. For a fixed value of β the energy probability

density

Pβ(E) = cβ n(E) e−βE (63)

is peaked around the average value Ê(β), where cβ is a normalization con-

stant determined by
∑

E Pβ(E) = 1.

Away from first and second order phase transitions, the width of the

energy distribution is △E ∼
√

V . This follows from the fact that the fluc-

tuations of the N ∼ V lattice spins are essentially uncorrelated, so that the

magnitude of a typical fluctuations is ∼
√

N . As the energy is an extensive

quantity ∼ V , we find that the re-weighting range is △β ∼ 1/
√

V , so that

△βE ∼
√

V stays within the fluctuation of the system.

Interestingly, the re-weighting range increases at a second order phase

transition point, because critical fluctuations are larger than non-critical

fluctuations. Namely, one has △E ∼ V x with 1/2 < x < 1 and the require-

ment △βE ∼ V x yields △β ∼ V x−1.
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For first order phase transitions one has a latent heat △V ∼ V , but

this does not mean that the re-weighting range becomes of order one. In

essence, the fluctuations collapse, because the two phases become separated

by an interface. One is back to fluctuations within either of the two phases,

i.e. △β ∼ 1/
√

V .

The important configurations at temperature T = 1/β are at the energy

values for which the probability density Pβ(E) is large. To sample them

efficiently, one needs a procedure which generates the configurations with

their Boltzmann weights

w
(k)
B = e−βE(k)

. (64)

The number of configurations n(E) and the weights combine then so that

the probability to generate a configuration at energy E becomes precisely

Pβ(E) as given by equation (63).

9. Importance Sampling and Markov Chain Monte Carlo

For the canonical ensemble importance sampling generates configura-

tions k with probability

P
(k)
B = cB w

(k)
B = cB e−βE(k)

(65)

where the constant cB is determined by the normalization condition∑
k P

(k)
B = 1. The vector (P

(k)
B ) is called Boltzmann state. When configu-

rations are stochastically generated with probability P
(k)
B , the expectation

value becomes the arithmetic average:

Ô = Ô(β) = 〈O〉 = lim
NK→∞

1

NK

NK∑

n=1

O(kn) . (66)

Truncating the sum at some finite value of NK , we obtain an estimator

of the expectation value

O =
1

NK

NK∑

n=1

O(kn) . (67)

Normally, we cannot generate configurations k directly with the probabil-

ity (65), but they may be found as members of the equilibrium distribu-

tion of a dynamic process. A Markov process is a particularly simple

dynamic process, which generates configuration kn+1 stochastically from

configuration kn, so that no information about previous configurations
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kn−1, kn−2, . . . is needed. The elements of the Markov process time se-

ries are the configurations. Assume that the configuration k is given. Let

the transition probability to create the configuration l in one step from k

be given by W (l)(k) = W [k → l]. The transition matrix

W =
(
W (l)(k)

)
(68)

defines the Markov process. Note, that this matrix is a very big (never stored

in the computer), because its labels are the configurations. To generate

configurations with the desired probabilities, the matrix W needs to satisfy

the following properties:

(i) Ergodicity:

e−βE(k)

> 0 and e−βE(l)

> 0 imply : (69)

an integer number n > 0 exists so that (Wn)(l)(k) > 0 holds.

(ii) Normalization:
∑

l

W (l)(k) = 1 . (70)

(iii) Balance:
∑

k

W (l)(k) e−βE(k)

= e−βE(l)

. (71)

Balance means: The Boltzmann state (65) is an eigenvector with eigen-

value 1 of the matrix W = (W (l)(k)).

An ensemble is a collection of configurations for which to each con-

figuration k a probability P (k) is assigned,
∑

k P (k) = 1. The Gibbs or

Boltzmann ensemble EB is defined to be the ensemble with the proba-

bility distribution (65).

An equilibrium ensemble Eeq of the Markov process is defined by its

probability distribution Peq satisfying

W Peq = Peq , in components P (l)
eq =

∑

k

W (l)(k)P (k)
eq . (72)

Statement: Under the conditions (i), (ii) and (iii) the Boltzmann en-

semble is the only equilibrium ensemble of the Markov process.

For a proof the readers is referred to [7]. There are many ways to con-

struct a Markov process satisfying (i), (ii) and (iii). A stronger condition

than balance (71) is
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(iii’) Detailed balance:

W (l)(k) e−βE(k)

= W (k)(l)e−βE(l)

. (73)

Using the normalization
∑

k W (k)(l) = 1 detailed balance implies bal-

ance (iii).

At this point we have succeeded to replace the canonical ensemble aver-

age by a time average over an artificial dynamics. Calculating averages over

large times, like one does in real experiments, is equivalent to calculating

averages of the ensemble. One distinguishes dynamical universality classes.

The Metropolis and heat bath algorithms discussed in the following fall

into the class of so called Glauber dynamics, model A in a frequently used

classification [10]. Cluster algorithms [21] constitute another universality

class.

9.1. Metropolis and Heat Bath Algorithm for Potts Models

The Metropolis algorithm can be used whenever one knows how to cal-

culate the energy of a configuration. Given a configuration k, the Metropolis

algorithm proposes a configuration l with probability

f(l, k) normalized to
∑

l

f(l, k) = 1 . (74)

The new configuration l is accepted with probability

w(l)(k) = min

[
1,

P
(l)
B

P
(k)
B

]
=

{
1 for E(l) < E(k)

e−β(E(l)−E(k)) for E(l) > E(k).
(75)

If the new configuration is rejected, the old configuration has to be counted

again. The acceptance rate is defined as the ratio of accepted changes

over proposed moves. With this convention we do not count a move as

accepted when it proposes the at hand configuration.

The Metropolis procedure gives rise to the transition probabilities

W (l)(k) = f(l, k)w(l)(k) for l 6= k (76)

and W (k)(k) = f(k, k) +
∑

l 6=k

f(l, k) (1 − w(l)(k)) . (77)

Therefore, the ratio
(
W (l)(k)/W (k)(l)

)
satisfies detailed balance (73) if

f(l, k) = f(k, l) holds . (78)
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Otherwise the probability density f(l, k) is unconstrained. So there is an

amazing flexibility in the choice of the transition probabilities W (l)(k). Also,

the algorithm generalizes immediately to arbitrary weights.

The heat bath algorithm chooses a state qi directly with the local

Boltzmann distribution defined by its nearest neighbors. The state qi can

take on one of the values 1, . . . , q and, with all other states set, determines

a value of the energy function (56). We denote this energy by E(qi) and

the Boltzmann probabilities are

PB(qi) = const e−β E(qi) (79)

where the constant is determined by the normalization condition

q∑

qi=1

PB(qi) = 1 . (80)

In equation (79) we can define E(qi) to be just the contribution of the

interaction of qi with its nearest neighbors to the total energy and absorb

the other contributions into the overall constant. Here we give a generic

code which works for arbitrary values of q and d (other implementations

may be more efficient).

We calculate the cumulative distribution function of the heat bath prob-

abilities

PHB(qi) =

qi∑

q′

i
=1

PB(q′i) . (81)

The normalization condition (80) implies PHB(q) = 1. Comparison of these

cumulative probabilities with a uniform random number xr yields the heat

bath update qi → q′i. Note that in the heat bath procedure the original

value qin
i does not influence the selection of qnew

i .

9.2. The O(3) σ Model and the Heat Bath Algorithm

We give an example of a model with a continuous energy function. Expec-

tation values are calculated with respect to the partition function

Z =

∫ ∏

i

dsi e−βE({si}) . (82)

The spins ~si =




si,1

si,2

si,3



 are normalized to (~si)
2 = 1 (83)
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and the measure dsi is defined by

∫
dsi =

1

4π

∫ +1

−1

d cos(θi)

∫ 2π

0

dφi ,

(84)

where the polar (θi) and azimuth (φi) angles define the spin si on the unit

sphere. The energy is

E = −
∑

〈ij〉

~si~sj , (85)

where the sum goes over the nearest neighbor sites of the lattice and vecsi~sj

is the dot product of the vectors. The 2d version of the model is of interest

to field theorists because of its analogies with the four-dimensional Yang-

Mills theory. In statistical physics the d-dimensional model is known as the

Heisenberg ferromagnet (references can be found in [7]).

We would like to update a single spin ~s. The sum of its 2d neighbors is

~S = ~s1 + ~s2 + · · · + ~s2d−1 + ~s2d .

Hence, the contribution of spin ~s to the energy is 2d − ~s~S. We propose a

new spin ~s
′

with the measure (84) by drawing two uniformly distributed

random numbers

φr ∈ [0, 2π) for the azimuth angle and

cos(θr) = xr ∈ [−1, +1) for the cosine of the polar angle .

This defines the probability function f(~s
′

, ~s) of the Metropolis process,

which accepts the proposed spin ~s
′

with probability

w(~s → ~s
′

) =

{
1 for ~S~s

′

> ~S~s ,

e−β(~S~s−~S~s
′

) for ~S~s
′

< ~S~s .

If sites are chosen with the uniform probability distribution 1/N per

site, where N is the total number of spins, it is obvious that the algorithm

fulfills detailed balance. It is noteworthy that the procedure remains valid

when the spins are chosen in the systematic order 1, . . . , N . Balance (71)

still holds, whereas detailed balance (73) is violated (an exercise of Ref. [7]).

One would prefer to choose ~s
′

directly with the probability

W (~s → ~s
′

) = P (~s
′

; ~S) = const eβ ~s
′ ~S .

The heat bath algorithm creates this distribution. Implementation of it

becomes feasible when the energy function allows for an explicit calculation

of the probability P (~s
′

; ~S). This is an easy task for the O(3) σ-model. Let

α = angle(~s
′

, ~S), x = cos(α) and S = β|~S| .



October 20, 2004 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) article

26 B.A. Berg

For S = 0 a new spin ~s
′

is simply obtained by random sampling. We assume

in the following S > 0. The Boltzmann weight becomes exp(xS) and the

normalization constant follows from
∫ +1

−1

dx exS =
2

S
sinh(S) .

Therefore, the desired probability is

P (~s
′

; ~S) =
S

2 sinh(S)
exS =: f(x)

and the method of Eq. (6) can be used to generate events with the prob-

ability density f(x). A uniformly distributed random number yr ∈ [0, 1)

translates into

xr = cosαr =
1

S
ln [ exp(+S) − yr exp(+S) + yr exp(−S)] . (86)

Finally, one has to give ~s
′

a direction in the plane orthogonal to S. This

is done by choosing a random angle βr uniformly distributed in the range

0 ≤ βr < 2π. Then, xr = cosαr and βr completely determine ~s
′

with

respect to ~S. Before storing ~s
′

in the computer memory, we have to cal-

culate coordinates of ~s
′

with respect to a Cartesian coordinate system,

which is globally used for all spins of the lattice. This amounts to a linear

transformation.

9.3. Example Runs

Start and equilibration: Under repeated application of one of our up-

dating procedures the probability of states will approach the Boltzmann

distribution. However, initially we have to start with a microstate which

may be far off the Boltzmann distribution. Suppression factors like 10−10000

are well possible. Although the weight of states decreases with 1/n where

n is the number of steps of the Markov process, one should exclude the ini-

tial states from the equilibrium statistics. In practice this means we should

allow for a certain number of sweeps nequi to equilibrate the system. One

sweep updates each spin once or once in the average.

Many ways to generate start configurations exist. Two natural and easy

to implement choices are:

(1) Generate a random configuration corresponding to β = 0. This defines

a random or disordered start of a MC simulation.

(2) Generate a configuration for which all Potts spins take on the same

q-value. This is called an ordered start of a MC simulation.
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Fig. 5. Two Metropolis time series of 200 sweeps each for a 2d Ising model on a 80×80
lattice at β = 0.4 are shown. Random updating for which the positions of the spins are
chose with the uniform probability distribution was used. Measurements of the energy
per spin after every sweep are plotted for ordered and disordered starts. The exact mean
value ês = −1.10608 is also indicated (assignment a0303 01).

Examples of initial time series are given in Fig. 5 and 6. Unless explic-

itly stated otherwise, we use here and in the following always sequential

updating, for which the spins are touched in a systematic order.

Consistency Checks: For the 2d Ising model we can test against the

exact finite lattice results of Ferdinand and Fisher [11]. We simulate a 202

lattice at β = 0.4, using a statistics of 10 000 sweeps for reaching equilib-

rium. The statistics for measurement is chosen to be 64 bins of 5 000 sweeps

each. The number 64 is taken, because according to the student distribution

the approximation to the Gaussian distribution is then excellent, while the

binsize of 5 000 (≫ 200) is argued to be large enough to neglect correlations

between the bins. A more careful analysis is the subject of our next section.
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Fig. 6. q = 10 Potts model time series of 200 sweeps on a 80 × 80 lattice at β = 0.62.
Measurements of the energy per spin after every sweep are plotted for ordered and
disordered starts (assignment a0303 05).

With our statistics we find (assignment a0303 06)

es = −1.1172 (14) (Metropolis) versus ês = −1.117834 (exact) . (87)

The Gaussian difference test gives a perfectly admissible value, Q = 0.66.

For the 2d 10-state Potts model at β = 0.62 we test our Metropolis

versus our heat bath code on a 20× 20 lattice. For the heat bath updating

we use the same statistics as for the 2d Ising model. For the Metropolis

updating we increase these numbers by a factor of four. This increase is

done, because we expect the performance of Metropolis updating for the

10-state model to be worse than for the 2-state model: At low temperature

the likelihood to propose the most probable (aligned) Potts spin is 1/2 for

the 2-state model, but only 1/10 for the 10-state model, and β = 0.62 is

sufficiently close to the ordered phase, so that this effect is expected to

be of relevance. The results of our simulations are (assignment a0303 08)

es = −0.88709 (30) (Metropolis) versus es = −0.88664 (28) (heat bath)
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Fig. 7. Histogram of the energy per spin for the 3d 3-state Potts model on a 243 latticed
at β = 0.275229525 (assignment a0303 10).

and Q = 0.27 for the Gaussian difference test. Another perfectly admissable

value.

To illustrate features of a first order phase transition for the 3d 3-state

Potts model, we use the 1-hit Metropolis algorithm on a 243 lattice and sim-

ulate at β = 0.275229525. We perform 20 000 sweeps for reaching equilib-

rium, then 64×10 000 sweeps with measurements. From the latter statistics

we show in Fig. 7 the energy histogram and its error bars. The histogram ex-

hibits a double peak structure, which is typically obtained when systems

with first order transitions are simulated on finite lattices in the neigh-

borhood of so called pseudo-transition temperatures. These are finite

lattice temperature definitions, which converge with increasing system size

towards the infinite volume transition temperature. Equal heights of the

maxima of the two peaks is one of the popular definition of a pseudo-

transition temperature for first order phase transitions. Equal weights (ar-

eas under the curves) is another, used in the lecture by Prof. Landau. Our β
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Fig. 8. Peaked distribution functions for the O(3) σ-model mean energy per link on
various lattices at β = 1.1 (assignment a0304 08).

value needs to be re-weighted to a slightly higher value to arrange for equal

heights (assignment a0303 10). Our mean energy per spin, corresponding

to the histogram of the figure is es = −1.397 (13). Due to the double peak

structure of the histogram the error bar is relatively large. Still, the cen-

tral limit theorem works and a Kolmogorov test shows that our statistics

is large enough to create an approximately Gaussian distribution for the

binned data (assignment a0303 11).

Self-Averaging Illustration for the O(3) model: We compare in

Fig. 8 the peaked distribution function of the mean energy per link el for

different lattice sizes. The property of self-averaging is observed: The

larger the lattice, the smaller the confidence range. The other way round,

the peaked distribution function is very well suited to exhibit observables

for which self-averaging does not work, as for instance encountered in spin

glass simulations [5].
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10. Statistical Errors of Markov Chain Monte Carlo Data

In large scale MC simulation it may take months, possibly years, to collect

the necessary statistics. For such data a thorough error analysis is a must.

A typical MC simulation falls into two parts:

(1) Equilibration: Initial sweeps are performed to reach the equilibrium

distribution. During these sweeps measurements are either not taken

at all or they have to be discarded when calculating equilibrium expec-

tation values.

(2) Data Production: Sweeps with measurements are performed. Equi-

librium expectation values are calculated from this statistics.

A rule of thumb is: Do not spend more than 50% of your CPU

time on measurements! The reason for this rule is that one cannot be

off by a factor worse than two (
√

2 in the statistical error).

How many sweeps should be discarded for reaching equilibrium? In a

few situations this question can be rigorously answered with the Coupling

from the Past method (see the article by W. Kendall in this volume). The

next best thing to do is to measure the integrated autocorrelation time

and to discard, after reaching a visually satisfactory situation, a number of

sweeps which is larger than the integrated autocorrelation time. In practice

even this can often not be achieved.

Therefore, it is re-assuring that it is sufficient to pick the number of

discarded sweeps approximately right. With increasing statistics the con-

tribution of the non-equilibrium data dies out like 1/N , where N is the

number of measurements. This is eventually swallowed by the statistical

error, which declines only like 1/
√

N . The point of discarding the equilib-

rium configurations is that the factor in front of 1/N can be large.

There can be far more involved situations, like that the Markov chain

ends up in a metastable configuration, which may even stay unnoticed (this

tends to happen in complex systems like spin glasses or proteins).

10.1. Autocorrelations

We like to estimate the expectation value f̂ of some physical observable. We

assume that the system has reached equilibrium. How many MC sweeps are

needed to estimate f̂ with some desired accuracy? To answer this question,

one has to understand the autocorrelations within the Markov chain.

Given is a time series of N measurements from a Markov process

fi = f(xi), i = 1, . . . , N , (88)
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where xi are the configurations generated. The label i = 1, . . . , N runs in

the temporal order of the Markov chain and the elapsed time (measured

in updates or sweeps) between subsequent measurements fi, fi+1 is always

the same. The estimator of the expectation value f̂ is

f =
1

N

∑
fi . (89)

With the notation

t = |i − j|

the definition of the autocorrelation function of the observable f̂ is

Ĉ(t) = Ĉij = 〈 (fi−〈fi〉) (fj−〈fj〉) 〉 = 〈fifj〉−〈fi〉 〈fj〉 = 〈f0ft〉−f̂ 2 (90)

where we used that translation invariance in time holds for the equilibrium

ensemble. The asymptotic behavior for large t is

Ĉ(t) ∼ exp

(
− t

τexp

)
for t → ∞, (91)

where τexp is called (exponential) autocorrelation time and is related

to the second largest eigenvalue λ1 of the transition matrix by τexp = − lnλ1

under the assumption that f has a non-zero projection on the corresponding

eigenstate. Superselection rules are possible so that different autocorrelation

times reign for different operators.

The variance of f is a special case of the autocorrelations (90)

Ĉ(0) = σ2(f) . (92)

Some algebra [7] shows that the variance of the estimator f (89) for the

mean and the autocorrelation functions (90) are related by

σ2(f) =
σ2(f)

N

[
1 + 2

N−1∑

t=1

(
1 − t

N

)
ĉ(t)

]
with ĉ(t) =

Ĉ(t)

Ĉ(0)
. (93)

This equation ought to be compared with the corresponding equation for

uncorrelated random variables σ2(f) = σ2(f)/N . The difference is the fac-

tor in the bracket of (93), which defines the integrated autocorrelation

time

τint =

[
1 + 2

N−1∑

t=1

(
1 − t

N

)
ĉ(t)

]
. (94)
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For correlated data the variance of the mean is by the factor τint larger

than the corresponding naive variance for uncorrelated data:

τint =
σ2(f)

σ2
naive(f)

with σ2
naive =

σ2(f)

N
. (95)

In most simulations one is interested in the limit N → ∞ and equation (94)

becomes

τint = 1 + 2

∞∑

t=1

ĉ(t) . (96)

The numerical estimation of the integrated autocorrelation time faces dif-

ficulties. Namely, the variance of the N → ∞ estimator of τint diverges:

τ int = 1 + 2

∞∑

t=1

c(t) and σ2(τ int) → ∞ , (97)

because for large t each c(t) adds a constant amount of noise, whereas the

signal dies out like exp(−t/τexp). To obtain an estimate one considers the

t-dependent estimator

τ int(t) = 1 + 2

t∑

t′=1

c(t′) (98)

and looks out for a window in t for which τ int(t) is flat.

To give a simple example, let us assume that the autocorrelation func-

tion is governed by a single exponential autocorrelation time

Ĉ(t) = const exp

(
− t

τexp

)
. (99)

In this case we can carry out the sum (96) for the integrated autocorrelation

function and find

τint = 1 + 2

∞∑

t=1

e−t/τexp = 1 +
2 e−1/τexp

1 − e−1/τexp
. (100)

For a large exponential autocorrelation time τexp ≫ 1 the approximation

τint = 1 +
2 e−1/τexp

1 − e−1/τexp

∼= 1 +
2 − 2/τexp

1/τexp
= 2 τexp − 1 ∼= 2 τexp (101)

holds.
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10.2. Integrated Autocorrelation Time and Binning

Using binning the integrated autocorrelation time can also be estimated via

the variance ratio. We bin the time series (88) into Nbs ≤ N bins of

Nb = NBIN =

[
N

Nbs

]
=

[
NDAT

NBINS

]
(102)

data each. Here [.] stands for Fortran integer division, i.e., Nb = NBIN is

the largest integer ≤ N/Nbs, implying Nba · Nb ≤ N . It is convenient to

choose the values of N and Nbs so that N is a multiple of Nbs. The binned

data are the averages

fNb

j =
1

Nb

jNb∑

i=1+(j−1)Nb

fi for j = 1, . . . , Nbs . (103)

For Nb > τexp the autocorrelations are essentially reduced to those between

nearest neighbor bins and even these approach zero under further increase

of the binsize.

For a set of Nbs binned data fNb

j , (j = 1, . . . , Nbs) we may calculate the

mean with its naive error bar. Assuming for the moment an infinite time

series, we find the integrated autocorrelation time (95) from the following

ratio of sample variances

τint = lim
Nb→∞

τNb

int with τNb

int =

(
s2

f
N

b

s2
f

)
. (104)

In practice the Nb → ∞ limit will be reached for a sufficiently large, finite

value of Nb. The statistical error of the τint estimate (104) is, in the first

approximation, determined by the errors of s2

f
N

b
. The typical situation is

then that, due to the central limit theorem, the binned data are approxi-

mately Gaussian, so that the error of s2

f
N

b
is analytically known from

the χ2 distribution. Finally, the fluctuations of s2
f

of the denominator give

rise to a small correction which can be worked out [7].

Numerically most accurate estimates of τint are obtained for the finite

binsize Nb which is just large enough that the binned data (103) are prac-

tically uncorrelated. While the Student distribution shows that the con-

fidence intervals of the error bars from 16 uncorrelated normal data are

reasonable approximations to those of the Gaussian standard deviation,

about 1000 independent data are needed to provide a decent estimate of

the corresponding variance (at the 95% confidence level with an accuracy

of slightly better than 10%). It makes sense to work with error bars from
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16 binned data, but the error of the error bar, and hence a reliable estimate

of τint, requires far more data.

10.3. Illustration: Metropolis generation of normally

distributed data

We generate normally distributed data according to the Markov process

x′ = x + 2 a xr − a (105)

where x is the event at hand, xr a uniformly distributed random number

in the range [0, 1), and the real number a > 0 is a parameter which relates

to the efficiency of the algorithm. The new event x′ is accepted with the

Metropolis probability

Paccept(x
′) =

{
1 for x′ 2 ≤ x2;

exp[−(x′ 2 − x2)/2] for x′ 2 > x2.
(106)

If x′ is rejected, the event x is counted again. The Metropolis process in-

troduces an autocorrelation time in the generation of normally distributed

random data.

We work with N = 217 = 131072 data and take a = 3 for the Markov

process (105), what gives an acceptance rate of approximately 50%. The

autocorrelation function of this process is depicted in Fig. 9 (assignment

a0401 01). The integrated autocorrelation time (assignment a0401 02) is

shown in Fig. 10. We compare the τNb

int estimators with the direct estimators

τint(t) at

t = Nb − 1 . (107)

With this relation the estimators agree for binsize Nb = 1 and for larger

Nb the relation gives the range over which we combine data into either

one of the estimators. The approach of the binning procedure towards the

asymptotic τint value is slower than that of the direct estimate of τint.

For our large NDAT = 221 data set τint(t) reaches its plateau before t =

20. All the error bars within the plateau are strongly correlated. Therefore,

it is not recommendable to make an attempt to combine them. Instead,

it is save to pick an appropriate single value and its error bar as the final

estimate:

τint = τint(20) = 3.962 ± 0.024 from 221 = 2, 097, 152 data. (108)

The binning procedure, on the other hand, shows an increase of τNb

int all the

way to Nb = 27 = 128, where the estimate with the one confidence level
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Fig. 9. The autocorrelation function (90) of a Metropolis time series for the normal
distribution (upper data) in comparison with those of our Gaussian random number
generator (lower data). For t ≥ 11 the inlay shows the autocorrelations on an enlarged
ordinate. The straight lines between the data points are just to guide the eyes. The
curves start with C(0) ≈ 1 because the variance of the normal distribution is one.

error bounds is

3.85 ≤ τ128
int ≤ 3.94 from 214 = 16, 384 bins from 221 data. (109)

How many data are needed to allow for a meaningful estimate of the

integrated autocorrelation time?

For a statistics of NDAT = 217 the autocorrelation signal disappears for

t ≥ 11 into the statistical noise. Still, there is clear evidence of the hoped

for window of almost constant estimates. A conservative choice is to take

t = 20 again, which now gives

τint = τint(20) = 3.86 ± 0.11 from 217 data. (110)

Worse is the binning estimate, which for the 217 data is

3.55 ≤ τ32
int ≤ 3.71 from 212 = 4, 096 bins from 217 = 131, 072 data. (111)
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Fig. 10. The upper curves in the figure and its inlays display the estimators obtained
by direct calculation. The lowest curve is for the Gaussian random number generator.
The remaining curves are binning procedure estimators of the integrated autocorrelation
time with one standard deviation bounds. The main figure relies on 221 data and depicts
estimators up to t = 127. The first inlay relies on 217 data and depicts estimators up to
t = 31. The second inlay relies on 214 data and depicts estimators up to t = 15.

Our best value (108) is no longer covered by the two standard deviation

zone.

For the second inlay the statistics is reduced to NDAT = 214. With the

integrated autocorrelation time rounded to 4, this is 4096 times τint. For

binsize Nb = 24 = 16 we are then down to Nbs = 1024 bins, which are

needed for accurate error bars of the variance. To work with this number

we limit, in accordance with equation (107), our τint(t) plot to the range

t ≤ 15. Still, we find a quite nice window of nearly constant τint(t), namely

all the way from t = 4 to t = 15. By a statistical fluctuation (assignment

a0401 03) τint(t) takes its maximum value at t = 7 and this makes τint(7) =

3.54±0.13 a natural candidate. However, this value is inconsistent with our

best estimate (108). The true τint(t) increases monotonically as function of
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t, so we know that the estimators have become bad for t > 7. The error bar

at t = 7 is too small to take care of our difficulties. One may combine the

t = 15 error bar with the t = 7 estimate. In this way the result is

τint = 3.54 ± 0.21 for 214 = 16, 384 data, (112)

which achieves consistency with (108) in the two error bar range. For binsize

Nb = 16 the binning estimate is

2.93 ≤ τ16
int ≤ 3.20 from 210 = 1, 024 bins from 214 data. (113)

Clearly, the binsize Nb = 16 is too small for an estimate of the integrated

autocorrelation time. We learn that one needs a binsize of at least ten times

the integrated autocorrelation time τint, whereas for its direct estimate it

is sufficient to have t about four times larger than τint.

11. Self-consistent versus reasonable error analysis

By visual inspection of the time series, one may get an impression about

the length of the out-of-equilibrium part of the simulation. On top of this

one should still choose

nequi ≫ τint , (114)

to allow the system to settle. That is a first reason, why it appears neces-

sary to control the integrated autocorrelation time of a MC simulations. A

second reason is that we have to control the error bars of the equilibrium

part of our simulation. Ideally the error bars are calculated as

△f =

√
σ2(f) with σ2(f) = τint

σ2(f)

N
. (115)

This constitutes a self-consistent error analysis of a MC simulation.

However, the calculation of the integrated autocorrelation time may

be out of reach. Many more than the about twenty independent data are

needed, which according to the Student distribution are sufficient to esti-

mate mean values with reasonably reliable error bars.

In practice, one has to be content with what can be done. Often this

means to rely on the binning method. We simply calculate error bars

of our ever increasing statistics with respect to a fixed number of

NBINS ≥ 16 . (116)

In addition, we may put 10% of the initially planned simulation time away

for reaching equilibrium. A-posteriori, this can always be increased. Once
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Fig. 11. Comparison of the integrated autocorrelation time of the Metropolis process
with random updating versus sequential updating for the d = 2 Ising model at β = 0.4
(assignment a0402 01 B). The ordering of the curves is identical with the ordering of the
labels in the figure.

the statistics is large enough, our small number of binned data become

effectively independent and our error analysis is justified.

How do we know that the statistics has become large enough? In practi-

cal applications there can be indirect arguments, like FSS estimates, which

tell us that the integrated autocorrelation time is in fact (much) smaller

than the achieved bin length. This is no longer self-consistent, as we perform

no explicit measurement of τint, but it is a reasonable error analysis.

12. Comparison of Markov chain MC algorithms

Is the 1-hit Metropolis algorithm more efficient with sequential updating

or with random updating? For 2d Ising lattices at β = 0.4 Fig. 11 illus-

trates that sequential updating wins. This is apparently related to the fact

that random updating may miss out on some spins for some time, whereas
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(assignment a0402 01 A). The ordering of the curves is identical with the ordering of the
labels in the figure.

sequential updating touches each spin with certainty during one sweep.

Figures 12 and 13 illustrate 2d Ising model simulations off and on the

critical point. Off the critical point, at β = 0.4, the integrated autocorre-

lation time increases for L = 5, 10 and 20. Subsequently, it decreases to

approach for L → ∞ a finite asymptotic value. On the critical point, at

β = βc = ln(1 +
√

2)/2, critical slowing down is observed, an increase

τint ∼ Lz with lattice size, where z ≈ 2.17 is the dynamical critical ex-

ponent. of the 2d Ising model. Estimates of z are compiled in the book by

Landau and Binder [16].

Using another MC dynamics the critical slowing down can be overcome.

Fig. 14 shows the major improvements for Swendsen-Wang [21] (SW) and

Wolff [24] (W) cluster updating.

Finally, Fig. 15 exhibit the improvements of heat bath over Metropolis

updating for the 10-state d = 2 Potts model at β = 0.62.
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13. Multicanonical Simulations

One of the questions which ought to be addressed before performing a

large scale computer simulation is “What are suitable weight factors for the

problem at hand?” So far we used the Boltzmann weights as this appears

natural for simulating the canonical ensemble. However, a broader view of

the issue is appropriate.

Conventional, canonical simulations calculate expectation values at a

fixed temperature T and can, by re-weighting techniques, only be extrapo-

lated to a vicinity of this temperature. For multicanonical simulations this is

different. A single simulation allows to obtain equilibrium properties of the

Gibbs ensemble over a range of temperatures. Of particular interest are two

situations for which canonical simulations do not provide the appropriate

implementation of importance sampling:
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Fig. 14. Estimates of integrated autocorrelation times from simulations of the d = 2
Ising model at the critical temperature βc = 0.44068679351 (assignment a0503 05).

(1) The physically important configurations are rare in the canonical en-

semble.

(2) A rugged free energy landscape makes the physically important config-

urations difficult to reach.

MC calculation of the interface tension of a first order phase transition

provide an example for the first situation. Let N = Ld be the lattice size. For

first order phase transition pseudo-transition temperatures βc(L) exist

so that the energy distributions P (E) = P (E; L) become double peaked

and the maxima at E1
max < E2

max are of equal height Pmax = P (E1
max) =

P (E2
max). In-between the maximum values a minimum is located at some

energy Emin. Configurations at Emin are exponentially suppressed like

Pmin = P (Emin) = cf Lp exp(−fsA) (117)

where fs is the interface tension and A is the minimal area between the

phases, A = 2Ld−1 for an Ld lattice, cf and p are constants (computations
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of p have been done in the capillary-wave approximation). The interface

tension can be determined by Binder’s histogram method [8]. One has to

calculate the quantities

fs(L) = − 1

A(L)
lnR(L) with R(L) =

Pmin(L)

Pmax(L)
(118)

and to make a FSS extrapolation of fs(L) for L → ∞.

For large systems a canonical MC simulation will practically never visit

configurations at energy E = Emin and estimates of the ratio R(L) will be

very inaccurate. The terminology supercritical slowing down was coined

to characterize such an exponential deterioration of simulation results with

lattice size.

Multicanonical simulations [3] approach this problem by sampling,
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in an appropriate energy range, with an approximation to the weights

w1/n(E(k)) =
1

n(E(k))
= exp

[
−b
(
E(k)

)
E + a

(
E(k)

)]
(119)

where n(E) is the number of states of energy E. The function b(E) defines

the inverse microcanonical temperature and a(E) the dimensionless,

microcanonical free energy. The function b(E) has a relatively smooth

dependence on its arguments, which makes it a useful quantity when dealing

with the weight factors.

Instead of the canonical energy distribution P (E), one samples a new

multicanonical distribution

Pmu(E) = cmu n(E)wmu(E) ≈ cmu . (120)

The desired canonical probability density is obtained by re-weighting

P (E) =
cβ

cmu

Pmu(E)

wmu(E)
e−βE. (121)

This relation is rigorous, because the weights wmu(E) used in the simulation

are exactly known. Accurate estimates of the interface tension (118) become

possible.

The multicanonical method requires two steps:

(1) Obtain a working estimate ŵmu(k) of the weights ŵ1/n(k). Working

estimate means that the approximation to (119) has to be good enough

to ensure movement in the desired energy range.

(2) Perform a Markov chain MC simulation with the fixed weights ŵmu(k).

The thus generated configurations constitute the multicanonical en-

semble. Canonical expectation values are found by re-weighting to the

Gibbs ensemble and jackknife methods allow reliable error estimates.

It is a strength of computer simulations that one can generate artificial

(not realized by nature) ensembles, which enhance the probabilities of rare

events one may be interested in, or speed up the dynamics. Nowadays Gen-

eralized Ensembles (umbrella, multicanonical, 1/k, ...) have found many

applications. Besides for first order phase transitions they are in particular

usefull for complex systems such as biomolecules, where they accelerate the

dynamics. For a review see [14].

13.1. How to get the Weights?

To get the weights is at the heart of the method. Some approaches are:
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(1) Overlapping, constrained (microcanonical) MC simulations. A poten-

tial problem is to fulfill ergodicity.

(2) FSS Estimates. This appears to be best when it works, but there may

be no FSS theory.

(3) General Purpose Recursions. Problem: They tend to deteriorate with

increasing lattice size (large lattices).

The Multicanonical Recursion (a variant of [4]): The multicanonical

parameterization of the weights is

w(a) = e−S(Ea) = e−b(Ea) Ea+a(Ea) ,

where (for ǫ being the smallest energy stepsize)

b(E) = [S(E + ǫ) − S(E)] /ǫ and a(E − ǫ) = a(E) + [b(E − ǫ) − b(E)] E .

The recursion reads then (see [6] for details):

bn+1(E) = bn(E) + ĝn
0 (E) [lnHn(E + ǫ) − lnHn(E)]/ǫ

ĝn
0 (E) = gn

0 (E) / [gn(E) + ĝn
0 (E)] ,

gn
0 (E) = Hn(E + ǫ)Hn(E) / [Hn(E + ǫ) + Hn(E)] ,

gn+1(E) = gn(E) + gn
0 (E), g0(E) = 0 .

The Wang-Landau Recursion [23]: Updates are performed with

estimators g(E) of the density of states

p(E1 → E2) = min

[
g(E1)

g(E2)
, 1

]
.

Each time an energy level is visited, the estimator of g(E) is updated ac-

cording to

g(E) → g(E) f

where, initially, g(E) = 1 and f = f0 = e1. Once the desired energy range

is covered, the factor f is refined:

f1 =
√

f, fn+1 =
√

fn+1

until some value very close to one like f = 1.00000001 is reached. Afterwards

the usual multicanonical production runs may be carried out.



October 20, 2004 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) article

46 B.A. Berg

14. Multicanonical Example Runs (2d Ising and Potts

models)

Most illustrations of this section are from Ref. [6].

For an Ising model on a 20 × 20 lattice the multicanonical recursion is

run in the range

namin = 400 ≤ iact ≤ 800 = namax . (122)

The recursion is terminated after a number of so called tunneling events.

A tunneling event is defined as an updating process which finds its way

from

iact = namin to iact = namax and back . (123)

This notation comes from applications to first order phase transitions. An

alternative notation for tunneling event is random walk cycle. For most

applications 10 tunneling events lead to acceptable weights.

For the Ising model example run we find the requested 10 tunneling

events after 787 recursions and 64,138 sweeps (assignment a0501 01). In

assignment a0501 02 a similar example run is performed for the 2d 10-

state Potts model.

Performance: If the multicanonical weighting would remove all rele-

vant free energy barriers, the behavior of the updating process would be-

come that of a free random walk. Therefore, the theoretically optimal

performance for the second part of the multicanonical simulation is

τtun ∼ V 2 . (124)

Recent work about first order transitions by Neuhaus and Hager [19] shows

that the multicanonical procedure removes only the leading free energy

barrier, while at least one subleading barrier causes a residual supercritical

slowing done. Up to certain medium sized lattices the behavior V 2+ǫ gives

a rather good effective description. For large lattices exponential slowing

down dominates again. The slowing down of the weight recursion with the

volume size is expected to be even (slightly) worse than that of the second

part of the simulation.

Re-Weighting to the Canonical Ensemble: Let us assume that

we have performed a multicanonical simulation which covers the energy

histograms for a temperature range

βmin ≤ β =
1

T
≤ βmax . (125)
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Given the multicanonical time series, where i = 1, . . . , n labels the gener-

ated configurations, the formula

O =

∑n
i=1 O(i) exp

[
−β E(i) + b(E(i))E(i) − a(E(i))

]
∑n

i=1 exp
[
−β E(i) + b(E(i))E(i) − a(E(i))

] . (126)

replaces the multicanonical weighting of the simulation by the Boltzmann

factor. The denominator differs from the partition function Z by a constant

factor which drops out.

For discrete systems it is sufficient to keep histograms when only func-

tions of the energy are calculated. For an operator O(i) = f(E(i)) equa-

tion (126) simplifies to

f =

∑
E f(E)hmu(E) exp [−β E + b(E)E − a(E)]∑

E hmu(E) exp [−β E + b(E)E − a(E)]
(127)

where hmu(E) is the histogram sampled during the multicanonical produc-

tion run and the sums are over all energy values for which hmu(E) has

entries.

The computer implementation of these equations requires care. The

differences between the largest and the smallest numbers encountered in

the exponents can be really large. We can avoid large numbers by dealing

only with logarithms of sums and partial sums. For C = A+ B with A > 0

and B > 0 we can calculate ln C = ln(A + B) from the values lnA and

lnB, without ever storing either A or B or C (see [7] for more details):

lnC = ln

[
max(A, B)

(
1 +

min(A, B)

max(A, B)

)]
(128)

= max (lnA, ln B) + ln{1 + exp [min(ln A, lnB) − max(ln A, lnB)]}
= max (lnA, ln B) + ln{1 + exp [−| lnA − lnB|]} .

14.1. Energy and Specific Heat Calculation

We are now ready to produce multicanonical data for the energy per spin

of the 2d Ising model on a 20×20 lattice (assignment a0501 03). The same

numerical data allow to calculate the specific heat defined by

C =
d Ê

d T
= β2

(
〈E2〉 − 〈E〉2

)
. (129)

The comparison of the multicanonical specific heat data with the exact

curve of Ferdinand and Fisher [11] is shown in Fig. 16 (error bars rely on

the jackknife method).
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Fig. 16. Specific heat per spin for the Ising model on a 20 × 20 lattice: Multicanonical
data versus exact results of Ferdinand and Fisher. This figure was first published in [6].

The energy histogram of this multicanonical simulation together its

canonically re-weighted descendants at β = 0, β = 0.2 and β = 0.4 is shown

in Fig. 17. The normalization of the multicanonical histogram is adjusted

so that it fits into the same figure with the three re-weighted histograms.

It is assignment a0501 06 to produce similar data for the 2d 10-state

Potts model and to re-weighted the multicanonical energy histogram to the

canonical distribution at β = 0.71, which is close to the pseudo-transition

temperature. The multicanonical method allows then to estimate the inter-

face tension of the transition by following the minimum to maximum ratio

R(L) of Eq. (118) over many orders of magnitude [3] as is shown in Fig. 18.

14.2. Free Energy and Entropy Calculation

At β = 0 the Potts partition function is Z = qN . Therefore, multicanonical

simulations allow for proper normalization of the partition function, if β = 0

is included in the temperature range. The properly normalized partition
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Fig. 17. Energy histogram from a multicanonical simulation of the Ising model on a
20× 20 lattice together with canonically re-weighted histograms (assignment a0501 04).
This figure was first published in [6].

function allows to calculate the Helmholtz free energy

F = −β−1 ln(Z) (130)

and the entropy

S =
F − E

T
= β (F − E) (131)

of the canonical ensemble. Here E is the expectation value of the internal

energy and the last equal sign holds because of our choice of units for the

temperature. For the 2d Ising model as well as for the 2d 10-state Potts

model, we show in Fig. 19 multicanonical estimates of the entropy density

per site

s = S/N . (132)

For the 2d Ising model one may also compare directly with the number

of states. Up to medium sized lattices this integer can be calculated to all
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Fig. 18. Energy histogram, es = −2s + 2, for the 2d 10-state Potts models on various
lattice sizes (re-drawn after Ref. [3] from where the notation for s comes).

digits by analytical methods [2]. However, MC results are only sensitive to

the first few (not more than six) digits and, therefore, one finds no real

advantages over using other physical quantities.

14.3. Time series analysis

Typically, one prefers in continuous systems time series data over keeping

histograms, because one avoids then discretization errors [7]. Even in dis-

crete systems time series data are of importance, as one often wants to

measure more physical quantities than just the energy. Then RAM stor-

age limitations may require to use a time series instead of histograms. To
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Fig. 19. Entropies per spin, s = S/N , from multicanonical simulations of the Ising and
10-state Potts models on an 20 × 20 lattice (assignments a0501 03 and a0501 05). The
full line is the exact result of Ferdinand and Fischer for the Ising model.

illustrate this point, we use the Potts magnetization.

In assignments a0501 08 and a0501 09 we create the same statistics on

20×20 lattices as before, including time series measurements for the energy

and for the Potts magnetization. For energy based observables the analysis

of the histogram and the time series data give consistent results.

For zero magnetic field, H = 0, the expectation value of the Potts

magnetization on a finite lattice is is simply

Mq0 = 〈 δqi,q0 〉 =
1

q
, (133)

independently of the temperature. For the multicanonical simulation it is

quite obvious that even at low temperatures each Potts state is visited with

probability 1/q. In contrast to this, the expectation value of the magneti-
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Fig. 20. The Potts magnetization per lattice site squared for the q = 2 and q = 10
Potts models on a 20 × 20 lattice (assignments a0501 08 and a0501 09).

zation squared

M2
q0 = q

〈(
1

N

N∑

i=1

δqi,q0

)2〉
(134)

is a non-trivial quantity. At β = 0 its value is M2
q0 = q (1/q)2 = 1/q, whereas

it approaches 1 for N → ∞, β → ∞. For q = 2 and q = 10 Fig. 20 shows

our numerical results and we see that the crossover of M2
q0 from 1/q to 1

happens in the neighborhood of the critical temperature. A FSS analysis

would reveal that a singularity develops at βc, which is in the derivative of

M2
q0 for the second order phase transitions (q ≤ 4) and in M2

q0 itself for the

first order transitions (q ≥ 5).
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